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Abstract

In this paper we consider the problem of classifyinghe- 5)-filiform Lie algebras. This
is the first index for which infinite parametrized families appear, as can be seen in dimension
7. Moreover we obtain large families of characteristic nilpotent Lie algebras with nilpotence
index 5 and show that at least for dimension 10 there is a characteristic nilpotent Lie algebra
with nilpotence index 4 which is the algebra of derivations of a nilpotent Lie algebra. © 2001
Elsevier Science Inc. All rights reserved.
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1. Generalities

Nilpotent Lie algebras have played an important role in mathematics over the
last 30 years: either in the classification theory of Lie algebras, where they play a
central role as a consequence of the Lévi theorem and the works of Malceyv, or in the
geometrical and analytical applications such as the nilmanifolds, which allow us to
construct concrete compact differential manifolds, or Pfaffian systems.

The first important research about nilpotent Lie algebras is due to K. Umlauf
in the last 19th century. In the 1940s and 1950s Morozov and Dixmier began with
the systematical study of this class of algebras. Morozov gave a classification of
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six-dimensional nilpotent Lie algebras in 1958 [10]. The existence of an infinity
of complex nilpotent Lie algebras from dimension 7 showed the complexity of the
classification problem. A complete classification of seven-dimensional nilpotent Lie
algebras was obtained by the first author and Goze [2].

We pointed out that for dimensions greater than or equal to 8 only partial clas-
sifications are known. Most of them correspond to the filiform Lie algebras, i.e.,
algebras with maximal nilpotence index. It seems natural to determine an invariant
which measures the nilpotence of Lie algebras. The first author and Goze introduced
in [1] an invariant that allowed not only the classification in dimension 7, but the
study of nilpotent Lie algebras with lower nilpotence indexes.

Letg, = (C", u,) be a nilpotent Lie algebra. For eaghe C" we denotec(X)
the ordered sequence of a similitude invariant of the nilpotent opesalgrX),

i.e., the ordered sequence of dimensions of the Jordan blocks for this operator. We
consider the lexicographical order in the set of these sequences.

Definition 1. The characteristic sequencegfis anisomorphism invariant (g,,)
defined by

c(gn) = max {c(X)},
XEgn_Clgn

where Clg, is the derived algebra. A nonzero vectlire g, — Clg, satisfying
c(X) = c(gp) is calledcharacteristic vector.

Definition 2. A nilpotent Lie algebrag, is called p-filiform if its characteristic
sequence i8(g,) = (n —p,1,..P ... ... 1).

Remark 3. It follows immediately from the definition op-filiformness that the

(n — 1)-filiform Lie algebras are the abelian algebradt is easily shown that the

(n — 2)-filiform Lie algebras are the direct sum of a Heisenberg alg@bra 1 and

an abelian algebra. A classification of the— 3)- and(n — 4)-filiform Lie algebras

can be found in [5], respectively [3]. The former is also the last where the num-
ber of isomorphism classes is finite, as we shall see. We are primarly interested in
nonsplit(n — 5)-filiform Lie algebras, for the gener& — 5)-filiform algebras are
obtained by direct sums of nonsplit algebras and abelian algebras. Thus classifying
the nonsplit we have classified all of them.

2. Theclassification theorem

Theorem 4 (Classification theoremEach n-dimensional nonsplit: — 5)-filiform
Lie algebrag, is isomorphic to one of the laws,, i € {1, ..., 103} listed below.
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Before we give the list in even and odd dimensions we have to introduce some
notations. This will be applicable to both odd and even dimensiongy,Lbé ann-
dimensional nilpotent complex Lie algebra. Then we identify the Lie algebra with its
law (C", un), wherep, € T, 4 is an alternated tensor of tyg2, 1) satisfying the

Jacobi equation. We denote the derived subalgebédgs The list is structured as
follows: at first we indicate indexes for which common brackets are listed. The bullet
item completes the corresponding law. This kind of presentation has two advantages:
on one hand side it is easier to read the concrete algebra laws, and on the other it indi-
cates in a certain manner that the laws are closely related (as it follows in the proof).
Finally, as usual the nonwritten brackets are zero or obtained by antisymmetry. For
a law 1, the subindex makes reference to the dimension of the algglznad the
superindex to the number of the isomorphism class. Greek letters as superindexes
are parameters.

2.1. Even dimension

The first subdivision is referred to as the dimension of the derived algebra.
1.dimC'g, =6

There are four laws with these conditions:

For the indexes € {1, 2, 3} we have the common brackets

Mo, (X1, Xj) = Xjy1, j €({2,3,4,5}, m >4,

1o, (X5, X2) = b, (X3, X4) = Y1; b, (Y1, Y2)) = X6, 2<1<m—3 if
m > 4.

o 13 (X3, X2) = Yo ud, (Yo, X3) = Xe; 3, (Y2, X2) = Xs;
o 13, (X3, Xo) =Y
° Mgm(le, X2) = Xe; Mgm(Xs, X2) = Y2+ Xs.

Fori = 4 we obtain the law
13, (X1, X;) = Xj41, j €{2,3,4,5}, m>5;

13, (Xs. X2) = 3, (X3, Xg) = Y1; pu3, (X3, X2) = Y2
143,,(Y3, X3) = Xg: 13, (Y3, X2) = Xs;
ng, (Yo—1,Yo) = Xg, 2<t <m —3.

2.dimclg, =5

Fori € {5,6,7%,8,...,19}we have
Mo, (X1, Xj) = X1, j €1{2,3,4,5}, m > 4;

ph, (Yor_1,Y2) = X, 2<t <m —3ifm > 4.

o 13 (X5, X2) = u3, (X3, Xa) = Y1; pu3, (Y2, X3) = Xe;
13, (Y2, X2) = Xs.
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o 1S (X3, X2) =Y1; uS, (Y1, X3) = Xe; S, (Y1, X2) = X5 + X;
13, (Y2, X2) =
7 7
o [y (X4, X2) = aXe; uy, (X3, X2) =Y1+aXs, a#0;
7 7 7,
Uon (Y1, X3) = X6 o (Y1, X2) = X5+ X6 Uy, (Y2, X2) = X6
o U8 (Xs, X2) =Y ul, (Y1, X3) = Xe; 1,,(Y1. X2) = Xs;
18, (Y2, X2) =

o 13,(Xa,X2) = Xe; 13,,(X3, X2) = Y1+ Xs5; p3, (Y1, X3) = X6;
19, (Y1, X2) = Xs; 113 (Y2, X2) =

o 1l (X3 X2) = Yl; M%Sl(yl, X2) = Xe; 130 (Y2, X3) = Xg;
u2m<Yz, Xo) =

o 13t (Xs, X2) = u3t (X3, Xa) = Xe; p3(X3, X2) = Yl;
na (Y1, X2) :XG» n3n (Y2, X3) = Xe, nan (Y2, X2) =

o 32 (X3, X2) = Y1; u32 (Y2, X3) = Xe; u32(Y2, X2) = Xs;

o U (Xs, X2) = uid (X3 Xa) = Xe; 133 (X3, Xo) = Y13
133 (Yz, X3) = Xe; 133 (Y2, X2) = Xs

o 13t (Xs, Xo) = udt (X3, Xa) = ndt(Xa, X2) = Xe;
n3t (X3, X2) = Y1+ X5, udd (Yo, X3) = Xe; 1d2 (Y2, X2) = X5

o Mgm(le, X2) = X6; M%E,(Xs, X2) = Y1+ Xs; 3o (Y2, X3) = Xe;
o 138(X3 X2) =Y1; u3l (Yo, X2) =

o MZm(Xs, X2) = MZm(Xs, X4) = Xe; M%;(Xs, X2) = Y1,

o 138(Xs Xp) = %,ii(xs, X4) = ni8 (Xa, Xz) Xe;
138 (X3, X2) = Y1+ Xs5; 38 (Y2, X2) =

o 132(Xa, X2) = Xe; 132 (X3, X2) = Y1+ Xs; u%?,,(Yz, X2) =X

Fori € {20,21,22,23)
o (X1, X)) = Xj41, j € (2,3,4,5), m>5;

o, (Y2, X3) = Xe; b, (Y2, X2) = X5; b, (Y3, X2) = X6;
o, (Y2, Ya) = Xe;

o, (Yor41, Yorp2) = X3 2<t <m —4ifm > 5.
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. M%%(Xs, X2) =11.
o 15 (Xs, X2) = 2l (Xs, Xa) = Xe; 13k (X3, X2) = Y1.

o 1122(Xs, Xp) = u32 (X3, Xa) = u5%(Xa, X2) = Xe;
122 (X3, X2) = Y1+ Xs.

. M%,S,,(le, X2) = Xe; M%ﬁ,(Xs, X2) =Y1+ Xs.
3.dimcC'g, =4

For the indexes € {24, ..., 29}the derived algebralg, is not abelian.
Fori € {24,25} we have

Hom(X5, X2) = b, (X3, X4) = Xe;

Wom(Y1, X3) = X6i 1, (Y1, X2) = X1 b, (Y2, X2) = Xe:
Mo (Yor-1, Y20) = Xe, 2<t <m —3ifm > 4

o 15y (Xa, X2) = X3 tp,(X3, X2) = Xs.

Fori € {26,27}

1, (X5, X2) = b, (X3, Xa) = X6;
o (Y2r-1, Yor) = Xp, 1<t <m—3.
o u5S(Y1, X3) = X3 p50 (Y1, X2) = Xs.
o 15 (X4, X2) = Xe; 5] (X3, X2) = X5 u3] (Y1, X3) = Xe;
n3! (Y1, X2) = Xs.

Fori € {28,29}

Mém(XS’ X2) = H’ém(X& Xa) = Xe;
i (Yor—1,Y2) = Xe, L<1<m—3ifm> 3.
® M%?n(X‘l’ X2) = Xe; u%ﬁ,(xg, X2) = Xs.

For the indexes € {30, ..., 53}the derived algebrélg, is abelian.
Fori € {30,31,32,33,34,35, 36}
Mo, (X1, Xj) = X1, j €({2,3,4,5}, m>5;

ph (Y1, X)) = Xj42, j €1{2,3,4};
ph (Y2, X)) = Xj43, j €1{2,3%

wh, (Yo, Yor42) = X, 2< t <m —3ifm > 5.
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o 130 (Y3, X2) = X6 p30 (Y1, Ya) =
o 13l (Y3, X2) = Xe; u3l(Y1, Ya) = Xe; u%,l,,(Yz, Ys) =
o 132(Y3, X2) = Xe; 132(Y1, Ya) = Xe; u32(Y2, Ya) =

o u3(Y3, X2) = X6, u33 (Y1, Ya) = Xe; u33 (Y2, Y3) = Xe;
133 (Yo, Ys) =

o 134 (Y3, X2) = Xe; 34 (Y, Ya) =
o 132 (Y3, X2) = Xe; p32 (Y1, Y3) = Xe; u%?,,(yz, Ys) =

o U3 (Y1,Y3) = Xe u3l(Yo,Ya) =X

Fori e {37,38,39,40,41)
Mo (X1, Xj) = Xj11. j €(2.3.4,5), m>4

wh, (Y1, X)) = Xj42, j €{2,3,4};

ph, (Yor—1,Ya) = X, 1<t <m—3.
o 13 (Y2, X3) = Xe; MSZI(YZ, X2) = X5
° Mzm(Yz, X)) =
o 13 (X3, X2) = Xe; u3o (Y2, Xo) =

o u3l(Xs, X2 =

Fori e {42,43,44}
Mo, (X1, Xj) = Xjy1, j€{2,3,4,5}, m>4

1o, (Y1, Xj) = Xj12, j €1{2,3,4};

ph (Yor—1,Y) = Xg, 2<t <m—3ifm > 4.
o 32 (Y2, X3) = X6; p32 (Y2, X2) =
o uP (Y2, X2) =
o u3 (X3, X2) = X uéﬁ,(Yz, X2) =X

Fori € {45,46}

ph, (Y1, X3) = Xe; pb, (Y1, X2) = X5 b, (Yo, X2) = X¢;
Mém(Ythl, Yo, ) =Xg, 2<t<m—3ifm > 4.
o 1158(X4, X2) = X6; 130 (X3, X2) =

Fori e {47,48,49,50}
Mo, (X1, Xj) = X1, j€{2,3,4,5}, m > 4;
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wh, (Y1, X3) = Xe; b, (Y1, X2) = Xs;
M’ém(YZI—ls Yor) = Xe, 1<t <m—3.

] M%,;(Yz, X2) = Xe.

o 18 (X4, X2) = Xe: 18 (X3, X2) = Xs; 183 (Y2, X2) = Xe.

o 130%(Xa, X2) = Xe; 1130 (X3, X2) = Xs.

Fori e {51,52,53}
Mo, (X1, Xj) = Xjy1, j €({2,3,4,5}, m=>3;

1y, (Y21, Y2) = Xo, 1<t <m—3ifm > 3.
o 132(X3, X2) = Xe.

33 (X4, X2) = Xg; 133 (X3, X2) = X
o 5 (Xa, X2) 6; Mo, (X3, X2) 5.

2.2. Odd dimension

1.dimClg, =6
There is only one law:
noh (X1, X)) = X341, j €{2.3,4,5}, m> 4

1om (X5, X2) = pu3n (X3, Xa) = Y1; pse (X3, X2) = Y;

Mgan(Ys, X3) = Xe; MgiH(Ys, X2) = Xs; Mgan(th, Y21+1) = Xe,
2<t<m—-3ifm> 4.

2.dimC'g, =5
Fgri € {55,56,57,58,59,60,61}
Womi1(X1, Xj) = Xjy1, j €{2,3,4,5}, m > 4

Woms1(Y2: X3) = Xe: i, 1(Y2, X2) = X5
Mlém+1(Y2tv Yor41) = Xe, 1<t <m—3.

o u3> . 1(Xs, X2) =30 (X3, Xa) = V1.

o 135, 1(X3, X2) =Y1; 138 (Y1, X2) = Xe.

o w3 (X5, X2) =3 (X3, Xa) = Xe; u3] (X3, X2) = Y13
MSZ,,H(YL X2) = Xe.

o u3l (X3 X2) =11
o 13 (X5, X2) =32 (X3, X4) = X6 132, 1(X3, X2) = V1.

o u$0 . (X5, X2) = pud0 (X3, Xa) = S0 1(Xa, X2) = X6;
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MS%H(XS, X2) =Y1+ Xs.

Fori € {62, ..., 74}

Moy 1(Yor, Yori1) = X6, 1<t <m—3ifm > 3.

* “gi+1(x5’ X2) = Mf2331+1(x3s Xq) = Y15 M‘§,2n+1(x4, Xo) = Xe;
Mgrzn+1(X3’ X2) = Xs.

o uSy (X5, X2) = ud3 (X3, Xa) = Y13 uS) (X3, X2) = Xe.

o udn (X5, X2) = S (X3, Xa) = V1.

o Honpa(Xs X2) = Vi i3, 4 (V1. X3) = Xoi 5,1V, X2) = X5+ X,

o uonti(Xa X2) = aXe: uhnty(Xa X2) = Y1+ aXs, o #0;
Ham1(Y1. X3) = X6 43, %1(Y1, X2) = X5+ Xs.

o udn i 1(X3, X2) = Y13 u3) 1(Y1, X3) = Xe; ud)4(Y1, X2) = Xs.

. MS?,,H(Xm X2) = Xg; MS§,,+1(X3, X5) = Y1 + Xs;
MgiH(YL X3) = Xe; M%H(YL X2) = Xs.

o 13 (X3 X2) = Y1 uSE (Y1, X2) = Xe.

o uid (X5, X2) =puld . (X3, Xa) = Xe: puh0 (X3, X2) = Y1
MZ?,,H(YL X2) = Xe.

o nl. (X3, X2) =Y1.
o MZiH(Xs, X2) = MZ,%H(X& X4) = Xe; MZ,iH(Xg, Xo) = V3.

° “gfn+1(X5’ X2) = M;31+1(X3’ X4) = M531+1(X4, X2) = Xe;
nh3 . 1(X3, X2) = Y1+ Xs.

o [, 1(Xa, X2) = Xe; puh,1(X3, X2) = Y1+ X

Fori ¢ {75,76,77,78)
Womi1(X1, Xj) = Xjy1, j €{2,3,4,5}, m >4

MémH(Yz, X3) = Xe; Mingrl(Yz, X2) = Xs; ugmH(Yg, Xo) = Xg;
o 1(Yor, Yori1) = Xe, 2<t <m —3ifm > 4.

o uho (X3, X2) =1

o ufd (X5, X2) = pull (X3, Xa) = Xe; p38 (X3, X2) = Y1.

o il (X5, Xo) = pfl (X3, Xa) = bl (Xa, X2) = Xe;
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M%Z,,H(Xs, X2) = Y1+ Xs.
o b 1(Xa, X2) = Xe; puho (X3, X2) = Y1+ X

3.dimC'g, =4
For the indexes € {79, ..., 85}the derived algebralg, is not abelian.
Fori € {79,80}
Momi1 (X1, Xj) = Xj1, j €1{2,3,4,5}, m > 4;

o1 (X5, X2) = pb, (X3, X4) = Xe;

Moy sa(Y1, X)) = X 43, j € {2,3);

Wops1(Y2, X2) = i, (Y1, ¥3) = Xe;
Wopya(Y2r, Yory1) = X, 2<t <m —3ifm > 4.

* M§9n+1(X4a X2) = Xs; Mg?n+l(X3, X2) = Xs.

Fori € {81,82,83,84,85}
Womi1(X1, Xj) = Xj41, j €1{2,3,4,5}, m = 3;

o1 (X5, X2) = b, 1(X3, X4) = Xe;
Mém-i—l(YZZ’ Yori1) =Xe, 1<t <m—3ifm > 3.
o U3na(Y1. X3) = Xei 3, 1(Y1, X2) = X5+ Xe.
o n3ni1(Y1, X3) = Xe1 u3s, (Y1, X2) = Xs.
o 3o 1(Xa, X2) = Xei 135, ,1(X3, X2) = X53 43y 1(¥1, X3) = Xe:
“gz?;zﬂ(Yl, X2) = Xs.
o ubh (Y1, X2) = Xe.
o ud 1(Xa, X2) = Xe; 1u5),,1(X3, X2) = X5; 45 4(Y1, X2) = Xe.

For the indexes € {86, ..., 103}the derived algebralg, is abelian.
Fori = 86 we have
188 (X1, X;) =Xji1, j €{2.3,4,5}, m>5;

uoo (Y1, X)) = X 12, j € (2,3,4);

uSe (Y2, X)) = X 43, j € (2,3);

188 1(Y3, Xo) = 88 (Y1, Ya) = Xg;

Mg§n+1(Y2, Y5) = Xe; u§2+1(Y2,, Yori1) = Xe, 3<t <m—3ifm > 5.

Fori € {87,...,92}
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Moy sa (Y1, X)) = X2, j € {2,3,4);
Wompr(Y2. X)) = Xj43, j € {2.3);
Woms1(Y2r, Y2r41) = Xo, 2< 1 <m —3ifm > 4.
o 18l (Y3, X2) = ! (Yo, Y3) = Xe.
* 'u€23§n+l(y37 X2) = Xe.
o 15 1(Ya X2) = u8) (Y1, Y2) = Xe.
¢ Mg’91+1(y3’ X2) = Mg9n+1(yl» Y3) = Xe.
° Mgrli1+1(Y1’ Y3) = Xe.

. Mgﬁ,H(Yz, Y3) = Xe.

Fori € {93,94,95}
Komi1(X1, Xj) = Xj1, j €(2,3,4,5}, m = 3;

Mo 1YL Xj) = X 42, j € (3,4}

/L’ém+l(Y2,, Yorr1) = X6, 1<t <m—3ifm > 3.
. M%?,,H(Yl, X2) = X4+ Xe.
. Mgan(YL X2) = X4.

o 13> (Y1, X2) = Xa; 3> 1(X3, X2) = Xe.

Fori € {96,97)
Momi1(X1, Xj) = Xj11, j €{2,3,4,5}, m>4;

o 1(Y1, Xj) = Xjy3, j €{2,3)
Mi2m+l(Y2’ X2) = M§m+1(Y1’ Y3) = Xg;
W 1(Yor, Yarr1) = Xe, 2< 1 <m —3ifm > 4.

o ud . 1(Xa, X2) = Xe: puyr, 1(X3, X2) = Xs.

Fori € {98, ...,103}
Womir (X1, Xj) = Xj+1, j €1{2,3,4,5}, m = 3;

Mi2m+1(Y2,, Yorr1) = X6, 1<t <m—3ifm > 3.

o 1S (Xa X2) = Xe; 18, 1(Xa, X2) = Xs; uB ,1(¥1, X3) = X
u38 (Y1, X2) = Xs.

o 1 1(Y1,X3) = Xe; pgy 1(Y1, X2) = Xs.

o 13X (Y1, X3) = Xe: ppo, (Y1, X2) = X5+ Xe.
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o ¥t (Y1, X2) = Xe.

o 1302 (Xa, X2) = X3 113021(X3, X2) = X5 u30%1(Y1, X2) = Xe.

o M%?,,il(X& X2) = M%,?il(Yl, X2) = Xe.

Remark 5. As a consequence of the classification in dimension 7 (see [2]) we have
EZ,,? ~ gz;jf if and only if &’ = +a.

Similarly, g5¢, ~ g5&, if and only if o’ = +a.

Comment on the proof. Letn = dim(g). Then we can find a basis (XX, ...,
Xs, Y1,...,Y,_6) such thatX, is a characteristic vector angdXq, X»2] = X3,
[X1, X3] = Xa, [X1, X4] = X5, [X1, X5] = X6, [X1,Xe] =0 and [X31,Y;] =

0Vi, which justifies the notation chosen for the basis. In the following we will use
basis labelled in this manner.

From the Jacobi and nilpotence conditions, as well as the characteristic sequence
it follows that the derived algebra has dimensions 6, 5 or 4. The cases are analyzed
by reordering the vectors which are not in the commutator algebra in subalgebras
of Heisenberg type, which is possible by elementary changes of basis. Through the
application of other changes we obtain the given list. To distinguish the isomorphism
classes we use classical invariants, such as the dimension of the Zégtethe di-
mension of the Lie algebra of derivations, the weight systems, as well as the existence
of concrete types of seven-dimensional ideals of characteristic seqieicé). We
additionally consider the isomorphism class of the nonsplit part of the factors of the
algebras by its center, which are based on the classificatiom -6f4)-filiform Lie
algebras.

As the proof is rather routine and mechanical, we omit it here. For a detailed and
complete proof of the classification see: http://xxx.lanl.gov/math.RA/0012246 [4].

3. Applications

We are now interested in those obtained laws which are characteristically nil-
potent, i.e., those of rank null. Characteristically nilpotent Lie algebras were first
introduced by Dixmier and Lister [6], and they have become an important class of
nilpotent algebras since then. Existence of such algebras has been proved for any
dimensiom > 7, as well as they do not exist far< 6. There are a lot of papers con-
structing families of characteristically nilpotent Lie algebras (e.g., [7,8,12,13]). As
most of known families and algebras are filiform, it is interesting to obtain examples
of characteristically nilpotent Lie algebras which are not filiform. An interesting ap-
proach to this fact can be found in [8], where characteristically nilpotent Lie algebras
are obtained from the nilradical of Borel subalgebras of complex simple Lie algebras.
We will consider here thp-filiform, characteristically nilpotent Lie algebras.
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Definition 6. A Lie algebrag, is called characteristically nilpotent if each deriva-
tion f € Der(g,) is nilpotent.

This definition results from a generalization of the descending central sequence
given by Dixmier and Lister. Unfortunately very little is known about the algebra
of derivations of a nilpotent Lie algebra, so that a direct construction of a nilpotent
Lie algebra of derivations is not a trivial problem [6,13]. However, characteristically
nilpotent Lie algebras behave as desired with sums, i.e., an algebra that is a finite sum
of ideals is characteristically nilpotent if and only if each ideal is characteristically
nilpotent [9]. From this we see th&t — p)-filiform characteristically nilpotent Lie
algebras must be searched among the nonsplit ones.

Proposition 7. For p < 4 there do not existn — p)-filiform characteristically nil-
potent Lie algebras.

Proof. For the abelian and the Heisenberg algebras the assertion is evident. For
p = 3 and 4 the proposition follows from the fact that these algebras have all ranks
greater than or equal to one (see [3,5])

Remark 8. It follows that characteristically nilpotent Lie algebras whose nilindex
is four must have characteristic sequepcé4, 2, ..., 1).

Proposition 9. An (n — 5)-filiform Lie algebra is characteristically nilpotent if and

only if it is isomorphic to one of the following laws3®, g5%* (& # 0), %8, 70, g7,

7,
ggsa ggv 98 a(a # 0)7 gga g%la ggsa 9577 987’ ggo‘

Corollary 10. There are characteristic nilpotent Lie algebrags with nilpotence
index5forn =7,8,9,14,15,16,17,18andn > 21.

We have seen that the Lie algebra of derivations of a nilpotent Lie algebra does not
have to be nilpotent in general. In fact the possibilities for the algebra of derivations
of a nilpotent Lie algebra are very ample. They can vary from representations of the
special linear algebra,, to nilpotent Lie algebras, and no guide has been recognized
until now. So it is natural to ask for the existence of characteristically nilpotent Lie
algebras whose algebra of derivations has concrete properties: specifically we ask if
there are characteristically nilpotent Lie algebras of derivations. That this does not
always occur is shown by the following example:

Example 11. Letgg be the Lie algebra whose Iaw;i@. The algebra of derivations
has dimension 13 and is isomorphic to
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[Z1, Z7] = Z3, [Z2, 23] = —Zs, [Z3,Z10] = —Z5
[Z1, Z3] = Z4, [Z2,Z6] = —Z5, [Z3,Z13] = —Z5
[Z1, Z4] = Zs, [Z2, Z9l = —Zs, [Zs, Z11] = —Z5

[Z1, Z10l = —Zs, [Z2,Z10) = —Zs, [Z8, Z12] = Z7
[Z1, Z11l = —Z7, (22, Z12] = Zs, [Zg, Z10] = Z5
[Z2, Z13] = —Z4

The linear systeniS) associated to this algebra has the nontrivial solution
V= Ow)lgzng = )"(1’ 17 27 35 47 35 4’ 13 27 27 35 37 2)7

so this algebra has nontrivial rank.

It seems that almost all characteristically nilpotent Lie algebras will have a non
characteristically nilpotent Lie algebra of derivations.The existence of algebras with
characteristically nilpotent algebra of derivations is proven by the next example,
which gives a positive answer to the question formulated by Tég6 in [11]:

Example 12. For the algebrg8! with associated law8! the algebra of derivations
Der(g?l) has dimension 10 and is isomorphic to the following algebra:

[Z1, Z2] = Z3, [Z2, Zg] = —Z5, [Z7,Z8] =275 — 275 + 2710
[Z1, Z3] = Za, [Z2, Zg] = —Zg, [Z7,Z9l = Zs — 2Z6 + 2Z10
[Z1, Z4] = Zs, [Z2, Zgl = —Z4 — 2Zs, |Zg, Zol =2Z¢ — 2Z10
[Z1, Z7] = —Z4, [Z2, Z10] = —Z5,

[Z3, Zg] = —Z5,

Itis not difficult to prove that this algebra is characteristically nilpotent.

Remark 13. Thus it is possible to define an “index” for characteristically nilpotent
Lie algebras. The index equal to 1 corresponds to the characteristically nilpotent
algebras Iikegg, i.e., those whose algebra of derivations admits a nontrivial diagon-
alizable derivation. So we can call a Lie algepicharacteristically nilpotent of index

kif g and the(k — 1) first algebras of derivations are characteristically nilpotent and
the k™ algebra of derivations is not characteristically nilpotent. It would be interest-
ing to know if there is a relation between the nilpotence index or the characteristic
sequence of the algebra and the inétedefined above. It would also be interesting

to know if the sequence of derivation algebras stabilizes or not.
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