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Abstract

In this paper we consider the problem of classifying the(n − 5)-filiform Lie algebras. This
is the first index for which infinite parametrized families appear, as can be seen in dimension
7. Moreover we obtain large families of characteristic nilpotent Lie algebras with nilpotence
index 5 and show that at least for dimension 10 there is a characteristic nilpotent Lie algebra
with nilpotence index 4 which is the algebra of derivations of a nilpotent Lie algebra. © 2001
Elsevier Science Inc. All rights reserved.
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1. Generalities

Nilpotent Lie algebras have played an important role in mathematics over the
last 30 years: either in the classification theory of Lie algebras, where they play a
central role as a consequence of the Lévi theorem and the works of Malcev, or in the
geometrical and analytical applications such as the nilmanifolds, which allow us to
construct concrete compact differential manifolds, or Pfaffian systems.

The first important research about nilpotent Lie algebras is due to K. Umlauf
in the last 19th century. In the 1940s and 1950s Morozov and Dixmier began with
the systematical study of this class of algebras. Morozov gave a classification of
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six-dimensional nilpotent Lie algebras in 1958 [10]. The existence of an infinity
of complex nilpotent Lie algebras from dimension 7 showed the complexity of the
classification problem. A complete classification of seven-dimensional nilpotent Lie
algebras was obtained by the first author and Goze [2].

We pointed out that for dimensions greater than or equal to 8 only partial clas-
sifications are known. Most of them correspond to the filiform Lie algebras, i.e.,
algebras with maximal nilpotence index. It seems natural to determine an invariant
which measures the nilpotence of Lie algebras. The first author and Goze introduced
in [1] an invariant that allowed not only the classification in dimension 7, but the
study of nilpotent Lie algebras with lower nilpotence indexes.

Let gn = (Cn, µn) be a nilpotent Lie algebra. For eachX ∈ C
n we denotec(X)

the ordered sequence of a similitude invariant of the nilpotent operatoradgn(X),

i.e., the ordered sequence of dimensions of the Jordan blocks for this operator. We
consider the lexicographical order in the set of these sequences.

Definition 1. The characteristic sequence ofgn is an isomorphism invariantc(gn)

defined by

c(gn) = max
X∈gn−C1gn

{c(X)},

whereC1gn is the derived algebra. A nonzero vectorX ∈ gn − C1gn satisfying
c(X) = c(gn) is calledcharacteristic vector.

Definition 2. A nilpotent Lie algebragn is called p-filiform if its characteristic
sequence isc(gn) = (n − p, 1, . . .(p) , . . . , . . . , 1).

Remark 3. It follows immediately from the definition ofp-filiformness that the
(n − 1)-filiform Lie algebras are the abelian algebrasa. It is easily shown that the
(n − 2)-filiform Lie algebras are the direct sum of a Heisenberg algebraH2p+1 and
an abelian algebra. A classification of the(n − 3)- and(n − 4)-filiform Lie algebras
can be found in [5], respectively [3]. The former is also the last where the num-
ber of isomorphism classes is finite, as we shall see. We are primarly interested in
nonsplit(n − 5)-filiform Lie algebras, for the general(n − 5)-filiform algebras are
obtained by direct sums of nonsplit algebras and abelian algebras. Thus classifying
the nonsplit we have classified all of them.

2. The classification theorem

Theorem 4 (Classification theorem).Each n-dimensional nonsplit(n − 5)-filiform
Lie algebragn is isomorphic to one of the lawsµi

n, i ∈ {1, . . . , 103},listed below.
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Before we give the list in even and odd dimensions we have to introduce some
notations. This will be applicable to both odd and even dimensions. Letgn be ann-
dimensional nilpotent complex Lie algebra. Then we identify the Lie algebra with its
law (Cn, µn), whereµn ∈ Ta

(2,1) is an alternated tensor of type(2,1) satisfying the

Jacobi equation. We denote the derived subalgebra asC1gn. The list is structured as
follows: at first we indicate indexes for which common brackets are listed. The bullet
item completes the corresponding law. This kind of presentation has two advantages:
on one hand side it is easier to read the concrete algebra laws, and on the other it indi-
cates in a certain manner that the laws are closely related (as it follows in the proof).
Finally, as usual the nonwritten brackets are zero or obtained by antisymmetry. For
a law µi

n the subindex makes reference to the dimension of the algebrag, and the
superindex to the number of the isomorphism class. Greek letters as superindexes
are parameters.

2.1. Even dimension

The first subdivision is referred to as the dimension of the derived algebra.
1. dimC1gn = 6

There are four laws with these conditions:
For the indexesi ∈ {1,2,3} we have the common brackets
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4,

µi
2m(X5, X2) = µi

2m(X3, X4) = Y1; µi
2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 if

m > 4.

• µ1
2m(X3, X2) = Y2; µ1

2m(Y2, X3) = X6; µ1
2m(Y2, X2) = X5;

• µ2
2m(X3, X2) = Y2;

• µ3
2m(X4, X2) = X6; µ3

2m(X3, X2) = Y2 + X5.

For i = 4 we obtain the law
µ4

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 5;
µ4

2m(X5, X2) = µ4
2m(X3, X4) = Y1; µ4

2m(X3, X2) = Y2;
µ4

2m(Y3, X3) = X6; µ4
2m(Y3, X2) = X5;

µ4
2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 .

2. dimC1gn = 5

For i ∈ {5,6,7α, 8, . . . , 19}we have
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 if m > 4.

• µ5
2m(X5, X2) = µ5

2m(X3, X4) = Y1; µ5
2m(Y2, X3) = X6;

µ5
2m(Y2, X2) = X5.
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• µ6
2m(X3, X2) = Y1; µ6

2m(Y1, X3) = X6; µ6
2m(Y1, X2) = X5 + X6;

µ6
2m(Y2, X2) = X6.

• µ
7,α
2m(X4, X2) = αX6; µ

7,α
2m(X3, X2) = Y1 + αX5, α /= 0;

µ
7,α
2m(Y1, X3) = X6; µ

7,α
2m(Y1, X2) = X5 + X6; µ

7,α
2m(Y2, X2) = X6.

• µ8
2m(X3, X2) = Y1; µ8

2m(Y1, X3) = X6; µ8
2m(Y1, X2) = X5;

µ8
2m(Y2, X2) = X6.

• µ9
2m(X4, X2) = X6; µ9

2m(X3, X2) = Y1 + X5; µ9
2m(Y1, X3) = X6;

µ9
2m(Y1, X2) = X5; µ9

2m(Y2, X2) = X6.

• µ10
2m(X3, X2) = Y1; µ10

2m(Y1, X2) = X6; µ10
2m(Y2, X3) = X6;

µ10
2m(Y2, X2) = X5.

• µ11
2m(X5, X2) = µ11

2m(X3, X4) = X6; µ11
2m(X3, X2) = Y1;

µ11
2m(Y1, X2) = X6; µ11

2m(Y2, X3) = X6; µ11
2m(Y2, X2) = X5.

• µ12
2m(X3, X2) = Y1; µ12

2m(Y2, X3) = X6; µ12
2m(Y2, X2) = X5;

• µ13
2m(X5, X2) = µ13

2m(X3, X4) = X6; µ13
2m(X3, X2) = Y1;

µ13
2m(Y2, X3) = X6; µ13

2m(Y2, X2) = X5.

• µ14
2m(X5, X2) = µ14

2m(X3, X4) = µ14
2m(X4, X2) = X6;

µ14
2m(X3, X2) = Y1 + X5; µ14

2m(Y2, X3) = X6; µ14
2m(Y2, X2) = X5.

• µ15
2m(X4, X2) = X6; µ15

2m(X3, X2) = Y1 + X5; µ15
2m(Y2, X3) = X6;

µ15
2m(Y2, X2) = X5.

• µ16
2m(X3, X2) = Y1; µ16

2m(Y2, X2) = X6.

• µ17
2m(X5, X2) = µ17

2m(X3, X4) = X6; µ17
2m(X3, X2) = Y1;

µ17
2m(Y2, X2) = X6.

• µ18
2m(X5, X2) = µ18

2m(X3, X4) = µ18
2m(X4, X2) = X6;

µ18
2m(X3, X2) = Y1 + X5; µ18

2m(Y2, X2) = X6.

• µ19
2m(X4, X2) = X6; µ19

2m(X3, X2) = Y1 + X5; µ19
2m(Y2, X2) = X6.

For i ∈ {20,21,22,23}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 5;
µi

2m(Y2, X3) = X6; µi
2m(Y2, X2) = X5; µi

2m(Y3, X2) = X6;
µi

2m(Y2, Y4) = X6;
µi

2m(Y2t+1, Y2t+2) = X6; 2 � t � m − 4 if m > 5.
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• µ20
2m(X3, X2) = Y1.

• µ21
2m(X5, X2) = µ21

2m(X3, X4) = X6; µ21
2m(X3, X2) = Y1.

• µ22
2m(X5, X2) = µ22

2m(X3, X4) = µ22
2m(X4, X2) = X6;

µ22
2m(X3, X2) = Y1 + X5.

• µ23
2m(X4, X2) = X6; µ23

2m(X3, X2) = Y1 + X5.

3. dimC1gn = 4

For the indexesi ∈ {24, . . . , 29}the derived algebraC1gn is not abelian.
For i ∈ {24,25}we have
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m(X5, X2) = µi
2m(X3, X4) = X6;

µi
2m(Y1, X3) = X6; µi

2m(Y1, X2) = X5; µi
2m(Y2, X2) = X6;

µi
2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 if m > 4.

• µ25
2m(X4, X2) = X6; µ25

2m(X3, X2) = X5.

For i ∈ {26,27}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m(X5, X2) = µi
2m(X3, X4) = X6;

µi
2m(Y2t−1, Y2t) = X6, 1 � t � m − 3.

• µ26
2m(Y1, X3) = X6; µ26

2m(Y1, X2) = X5.

• µ27
2m(X4, X2) = X6; µ27

2m(X3, X2) = X5; µ27
2m(Y1, X3) = X6;

µ27
2m(Y1, X2) = X5.

For i ∈ {28,29}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m(X5, X2) = µi
2m(X3, X4) = X6;

µi
2m(Y2t−1, Y2t) = X6, 1 � t � m − 3 if m > 3.

• µ29
2m(X4, X2) = X6; µ29

2m(X3, X2) = X5.

For the indexesi ∈ {30, . . . , 53}the derived algebraC1gn is abelian.
For i ∈ {30,31,32,33,34,35,36}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 5;
µi

2m(Y1, Xj ) = Xj+2, j ∈ {2,3,4};
µi

2m(Y2, Xj ) = Xj+3, j ∈ {2,3};
µi

2m(Y2t+1, Y2t+2) = X6, 2 � t � m − 3 if m > 5.
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• µ30
2m(Y3, X2) = X6; µ30

2m(Y1, Y4) = X6.

• µ31
2m(Y3, X2) = X6; µ31

2m(Y1, Y4) = X6; µ31
2m(Y2, Y4) = X6.

• µ32
2m(Y3, X2) = X6; µ32

2m(Y1, Y4) = X6; µ32
2m(Y2, Y3) = X6.

• µ33
2m(Y3, X2) = X6; µ33

2m(Y1, Y4) = X6; µ33
2m(Y2, Y3) = X6;

µ33
2m(Y2, Y4) = X6.

• µ34
2m(Y3, X2) = X6; µ34

2m(Y2, Y4) = X6.

• µ35
2m(Y3, X2) = X6; µ35

2m(Y1, Y3) = X6; µ35
2m(Y2, Y4) = X6.

• µ36
2m(Y1, Y3) = X6; µ36

2m(Y2, Y4) = X6.

For i ∈ {37,38,39,40,41}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m(Y1, Xj ) = Xj+2, j ∈ {2,3,4};
µi

2m(Y2t−1, Y2t) = X6, 1 � t � m − 3.

• µ37
2m(Y2, X3) = X6; µ37

2m(Y2, X2) = X5.

• µ38
2m(Y2, X2) = X6.

• µ39
2m(X3, X2) = X6; µ39

2m(Y2, X2) = X6.

• µ41
2m(X3, X2) = X6.

For i ∈ {42,43,44}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m(Y1, Xj ) = Xj+2, j ∈ {2,3,4};
µi

2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 if m > 4.

• µ42
2m(Y2, X3) = X6; µ42

2m(Y2, X2) = X5.

• µ43
2m(Y2, X2) = X6.

• µ44
2m(X3, X2) = X6; µ44

2m(Y2, X2) = X6.

For i ∈ {45,46}
µi

2m(X1, Xj ) = Xj+2, j ∈ {2,3,4,5}, m � 4;
µi

2m(Y1, X3) = X6; µi
2m(Y1, X2) = X5; µi

2m(Y2, X2) = X6;
µi

2m(Y2t−1, Y2t) = X6, 2 � t � m − 3 if m > 4.

• µ46
2m(X4, X2) = X6; µ46

2m(X3, X2) = X5.

For i ∈ {47,48,49,50}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
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µi
2m(Y1, X3) = X6; µi

2m(Y1, X2) = X5;
µi

2m(Y2t−1, Y2t) = X6, 1 � t � m − 3.

• µ47
2m(Y2, X2) = X6.

• µ48
2m(X4, X2) = X6; µ48

2m(X3, X2) = X5; µ48
2m(Y2, X2) = X6.

• µ50
2m(X4, X2) = X6; µ50

2m(X3, X2) = X5.

For i ∈ {51,52,53}
µi

2m(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m(Y2t−1, Y2t) = X6, 1 � t � m − 3 if m > 3.

• µ52
2m(X3, X2) = X6.

• µ53
2m(X4, X2) = X6; µ53

2m(X3, X2) = X5.

2.2. Odd dimension

1. dimC1gn = 6
There is only one law:
µ54

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µ54

2m+1(X5, X2) = µ54
2m+1(X3, X4) = Y1; µ54

2m+1(X3, X2) = Y2;
µ54

2m+1(Y3, X3) = X6; µ54
2m+1(Y3, X2) = X5; µ54

2m+1(Y2t, Y2t+1) = X6,

2 � t � m − 3 if m > 4.

2. dimC1gn = 5
For i ∈ {55,56,57,58,59,60,61}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m+1(Y2, X3) = X6; µi
2m+1(Y2, X2) = X5;

µi
2m+1(Y2t, Y2t+1) = X6, 1 � t � m − 3.

• µ55
2m+1(X5, X2) = µ55

2m+1(X3, X4) = Y1.

• µ56
2m+1(X3, X2) = Y1; µ56

2m+1(Y1, X2) = X6.

• µ57
2m+1(X5, X2) = µ57

2m+1(X3, X4) = X6; µ57
2m+1(X3, X2) = Y1;

µ57
2m+1(Y1, X2) = X6.

• µ58
2m+1(X3, X2) = Y1.

• µ59
2m+1(X5, X2) = µ59

2m+1(X3, X4) = X6; µ59
2m+1(X3, X2) = Y1.

• µ60
2m+1(X5, X2) = µ60

2m+1(X3, X4) = µ60
2m+1(X4, X2) = X6;
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µ60
2m+1(X3, X2) = Y1 + X5.

For i ∈ {62, . . . , 74}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m+1(Y2t, Y2t+1) = X6, 1 � t � m − 3 if m > 3.

• µ62
2m+1(X5, X2) = µ62

2m+1(X3, X4) = Y1; µ62
2m+1(X4, X2) = X6;

µ62
2m+1(X3, X2) = X5.

• µ63
2m+1(X5, X2) = µ63

2m+1(X3, X4) = Y1; µ63
2m+1(X3, X2) = X6.

• µ64
2m+1(X5, X2) = µ64

2m+1(X3, X4) = Y1.

• µ65
2m+1(X3, X2) = Y1; µ65

2m+1(Y1, X3) = X6; µ65
2m+1(Y1, X2) = X5 + X6.

• µ
66,α
2m+1(X4, X2) = αX6; µ

66,α
2m+1(X3, X2) = Y1 + αX5, α /= 0;

µ
66,α
2m+1(Y1, X3) = X6; µ

66,α
2m+1(Y1, X2) = X5 + X6.

• µ67
2m+1(X3, X2) = Y1; µ67

2m+1(Y1, X3) = X6; µ67
2m+1(Y1, X2) = X5.

• µ68
2m+1(X4, X2) = X6; µ68

2m+1(X3, X2) = Y1 + X5;
µ68

2m+1(Y1, X3) = X6; µ68
2m+1(Y1, X2) = X5.

• µ69
2m+1(X3, X2) = Y1; µ68

2m+1(Y1, X2) = X6.

• µ70
2m+1(X5, X2) = µ70

2m+1(X3, X4) = X6; µ70
2m+1(X3, X2) = Y1;

µ70
2m+1(Y1, X2) = X6.

• µ71
2m+1(X3, X2) = Y1.

• µ72
2m+1(X5, X2) = µ72

2m+1(X3, X4) = X6; µ72
2m+1(X3, X2) = Y1.

• µ73
2m+1(X5, X2) = µ73

2m+1(X3, X4) = µ73
2m+1(X4, X2) = X6;

µ73
2m+1(X3, X2) = Y1 + X5.

• µ74
2m+1(X4, X2) = X6; µ74

2m+1(X3, X2) = Y1 + X5.

For i ∈ {75,76,77,78}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m+1(Y2, X3) = X6; µi
2m+1(Y2, X2) = X5; µi

2m+1(Y3, X2) = X6;
µi

2m+1(Y2t, Y2t+1) = X6, 2 � t � m − 3 if m > 4.

• µ75
2m+1(X3, X2) = Y1.

• µ76
2m+1(X5, X2) = µ76

2m+1(X3, X4) = X6; µ76
2m+1(X3, X2) = Y1.

• µ77
2m+1(X5, X2) = µ77

2m+1(X3, X4) = µ77
2m+1(X4, X2) = X6;
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µ77
2m+1(X3, X2) = Y1 + X5.

• µ78
2m+1(X4, X2) = X6; µ78

2m+1(X3, X2) = Y1 + X5.

3. dimC1gn = 4
For the indexesi ∈ {79, . . . , 85}the derived algebraC1gn is not abelian.
For i ∈ {79,80}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m+1(X5, X2) = µi
2m+1(X3, X4) = X6;

µi
2m+1(Y1, Xj ) = Xj+3, j ∈ {2,3};

µi
2m+1(Y2, X2) = µi

2m+1(Y1, Y3) = X6;
µi

2m+1(Y2t, Y2t+1) = X6, 2 � t � m − 3 if m > 4.

• µ80
2m+1(X4, X2) = X6; µ80

2m+1(X3, X2) = X5.

For i ∈ {81,82,83,84,85}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m+1(X5, X2) = µi
2m+1(X3, X4) = X6;

µi
2m+1(Y2t, Y2t+1) = X6, 1 � t � m − 3 if m > 3.

• µ81
2m+1(Y1, X3) = X6; µ81

2m+1(Y1, X2) = X5 + X6.

• µ82
2m+1(Y1, X3) = X6; µ82

2m+1(Y1, X2) = X5.

• µ83
2m+1(X4, X2) = X6; µ83

2m+1(X3, X2) = X5; µ83
2m+1(Y1, X3) = X6;

µ83
2m+1(Y1, X2) = X5.

• µ84
2m+1(Y1, X2) = X6.

• µ85
2m+1(X4, X2) = X6; µ85

2m+1(X3, X2) = X5; µ85
2m+1(Y1, X2) = X6.

For the indexesi ∈ {86, . . . , 103}the derived algebraC1gn is abelian.
For i = 86 we have
µ86

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 5;
µ86

2m+1(Y1, Xj ) = Xj+2, j ∈ {2,3,4};
µ86

2m+1(Y2, Xj ) = Xj+3, j ∈ {2,3};
µ86

2m+1(Y3, X2) = µ86
2m+1(Y1, Y4) = X6;

µ86
2m+1(Y2, Y5) = X6; µ86

2m+1(Y2t, Y2t+1) = X6, 3 � t � m − 3 if m > 5.

For i ∈ {87, . . . , 92}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
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µi
2m+1(Y1, Xj ) = Xj+2, j ∈ {2,3,4};

µi
2m+1(Y2, Xj ) = Xj+3, j ∈ {2,3};

µi
2m+1(Y2t, Y2t+1) = X6, 2 � t � m − 3 if m > 4.

• µ87
2m+1(Y3, X2) = µ87

2m(Y2, Y3) = X6.

• µ88
2m+1(Y3, X2) = X6.

• µ89
2m+1(Y3, X2) = µ89

2m+1(Y1, Y2) = X6.

• µ90
2m+1(Y3, X2) = µ90

2m+1(Y1, Y3) = X6.

• µ91
2m+1(Y1, Y3) = X6.

• µ92
2m+1(Y2, Y3) = X6.

For i ∈ {93,94,95}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m+1(Y1, Xj ) = Xj+2, j ∈ {3,4};
µi

2m+1(Y2t, Y2t+1) = X6, 1 � t � m − 3 if m > 3.

• µ93
2m+1(Y1, X2) = X4 + X6.

• µ94
2m+1(Y1, X2) = X4.

• µ95
2m+1(Y1, X2) = X4; µ95

2m+1(X3, X2) = X6.

For i ∈ {96,97}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 4;
µi

2m+1(Y1, Xj ) = Xj+3, j ∈ {2,3};
µi

2m+1(Y2, X2) = µi
2m+1(Y1, Y3) = X6;

µi
2m+1(Y2t, Y2t+1) = X6, 2 � t � m − 3 if m > 4.

• µ97
2m+1(X4, X2) = X6; µ97

2m+1(X3, X2) = X5.

For i ∈ {98, . . . , 103}
µi

2m+1(X1, Xj ) = Xj+1, j ∈ {2,3,4,5}, m � 3;
µi

2m+1(Y2t, Y2t+1) = X6, 1 � t � m − 3 if m > 3.

• µ98
2m+1(X4, X2) = X6; µ98

2m+1(X3, X2) = X5; µ98
2m+1(Y1, X3) = X6;

µ98
2m+1(Y1, X2) = X5.

• µ99
2m+1(Y1, X3) = X6; µ99

2m+1(Y1, X2) = X5.

• µ100
2m+1(Y1, X3) = X6; µ100

2m+1(Y1, X2) = X5 + X6.
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• µ101
2m+1(Y1, X2) = X6.

• µ102
2m+1(X4, X2) = X6; µ102

2m+1(X3, X2) = X5; µ102
2m+1(Y1, X2) = X6.

• µ103
2m+1(X3, X2) = µ103

2m+1(Y1, X2) = X6.

Remark 5. As a consequence of the classification in dimension 7 (see [2]) we have
g

7,α
2m 
 g

7,α′
2m if and only if α′ = ±α.

Similarly, g66,α
2m+1 
 g

66,α′
2m+1 if and only if α′ = ±α.

Comment on the proof. Let n = dim(g). Then we can find a basis (X1, X2, . . . ,

X6, Y1, . . . , Yn−6) such thatX1 is a characteristic vector and[X1, X2] = X3,

[X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6, [X1, X6] = 0 and [X1, Yi] =
0 ∀i, which justifies the notation chosen for the basis. In the following we will use
basis labelled in this manner.

From the Jacobi and nilpotence conditions, as well as the characteristic sequence
it follows that the derived algebra has dimensions 6, 5 or 4. The cases are analyzed
by reordering the vectors which are not in the commutator algebra in subalgebras
of Heisenberg type, which is possible by elementary changes of basis. Through the
application of other changes we obtain the given list. To distinguish the isomorphism
classes we use classical invariants, such as the dimension of the centerZ(g), the di-
mension of the Lie algebra of derivations, the weight systems, as well as the existence
of concrete types of seven-dimensional ideals of characteristic sequence(5,1,1). We
additionally consider the isomorphism class of the nonsplit part of the factors of the
algebras by its center, which are based on the classification of(n − 4)-filiform Lie
algebras.

As the proof is rather routine and mechanical, we omit it here. For a detailed and
complete proof of the classification see: http://xxx.lanl.gov/math.RA/0012246 [4].

3. Applications

We are now interested in those obtained laws which are characteristically nil-
potent, i.e., those of rank null. Characteristically nilpotent Lie algebras were first
introduced by Dixmier and Lister [6], and they have become an important class of
nilpotent algebras since then. Existence of such algebras has been proved for any
dimensionn � 7,as well as they do not exist forn � 6.There are a lot of papers con-
structing families of characteristically nilpotent Lie algebras (e.g., [7,8,12,13]). As
most of known families and algebras are filiform, it is interesting to obtain examples
of characteristically nilpotent Lie algebras which are not filiform. An interesting ap-
proach to this fact can be found in [8], where characteristically nilpotent Lie algebras
are obtained from the nilradical of Borel subalgebras of complex simple Lie algebras.
We will consider here thep-filiform, characteristically nilpotent Lie algebras.
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Definition 6. A Lie algebragn is called characteristically nilpotent if each deriva-
tion f ∈ Der(gn) is nilpotent.

This definition results from a generalization of the descending central sequence
given by Dixmier and Lister. Unfortunately very little is known about the algebra
of derivations of a nilpotent Lie algebra, so that a direct construction of a nilpotent
Lie algebra of derivations is not a trivial problem [6,13]. However, characteristically
nilpotent Lie algebras behave as desired with sums, i.e., an algebra that is a finite sum
of ideals is characteristically nilpotent if and only if each ideal is characteristically
nilpotent [9]. From this we see that(n − p)-filiform characteristically nilpotent Lie
algebras must be searched among the nonsplit ones.

Proposition 7. For p � 4 there do not exist(n − p)-filiform characteristically nil-
potent Lie algebras.

Proof. For the abelian and the Heisenberg algebras the assertion is evident. For
p = 3 and 4 the proposition follows from the fact that these algebras have all ranks
greater than or equal to one (see [3,5]).�

Remark 8. It follows that characteristically nilpotent Lie algebras whose nilindex
is four must have characteristic sequence� (4,2, . . . , 1).

Proposition 9. An (n − 5)-filiform Lie algebra is characteristically nilpotent if and
only if it is isomorphic to one of the following laws:g65

7 , g
66,α
7 (α /= 0),g68

7 , g70
7 , g81

7 ,

g83
7 , g6

8, g
7,α
8 (α /= 0),g9

8, g
11
8 , g25

8 , g27
8 , g57

9 , g80
9 .

Corollary 10. There are characteristic nilpotent Lie algebrasgn with nilpotence
index5 for n = 7,8,9,14,15,16,17,18andn � 21.

We have seen that the Lie algebra of derivations of a nilpotent Lie algebra does not
have to be nilpotent in general. In fact the possibilities for the algebra of derivations
of a nilpotent Lie algebra are very ample. They can vary from representations of the
special linear algebrasln to nilpotent Lie algebras, and no guide has been recognized
until now. So it is natural to ask for the existence of characteristically nilpotent Lie
algebras whose algebra of derivations has concrete properties: specifically we ask if
there are characteristically nilpotent Lie algebras of derivations. That this does not
always occur is shown by the following example:

Example 11. Let g6
8 be the Lie algebra whose law isµ6

8. The algebra of derivations
has dimension 13 and is isomorphic to
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[Z1, Z2] = Z3, [Z2, Z3] = −Z6, [Z3, Z10] = −Z5[Z1, Z3] = Z4, [Z2, Z6] = −Z5, [Z3, Z13] = −Z5[Z1, Z4] = Z5, [Z2, Z9] = −Z6, [Z8, Z11] = −Z5[Z1, Z10] = −Z6, [Z2, Z10] = −Z6, [Z8, Z12] = Z7[Z1, Z11] = −Z7, [Z2, Z12] = Z5, [Z9, Z10] = Z5[Z2, Z13] = −Z4

The linear system(S) associated to this algebra has the nontrivial solution

v = (λi)1�i�13 = λ(1,1,2,3,4,3,4,1,2,2,3,3,2),

so this algebra has nontrivial rank.

It seems that almost all characteristically nilpotent Lie algebras will have a non
characteristically nilpotent Lie algebra of derivations.The existence of algebras with
characteristically nilpotent algebra of derivations is proven by the next example,
which gives a positive answer to the question formulated by Tôgô in [11]:

Example 12. For the algebrag81
7 with associated lawµ81

7 the algebra of derivations
Der(g81

7 ) has dimension 10 and is isomorphic to the following algebra:

[Z1, Z2] = Z3, [Z2, Z6] = −Z5, [Z7, Z8] = 2Z5 − 2Z6 + 2Z10[Z1, Z3] = Z4, [Z2, Z8] = −Z6, [Z7, Z9] = Z5 − 2Z6 + 2Z10[Z1, Z4] = Z5, [Z2, Z9] = −Z4 − 2Z6, [Z8, Z9] = 2Z6 − 2Z10[Z1, Z7] = −Z4, [Z2, Z10] = −Z5,[Z1, Z8] = −Z6, [Z3, Z8] = −Z5,[Z3, Z9] = −Z5,

It is not difficult to prove that this algebra is characteristically nilpotent.

Remark 13. Thus it is possible to define an “index” for characteristically nilpotent
Lie algebras. The index equal to 1 corresponds to the characteristically nilpotent
algebras likeg6

8, i.e., those whose algebra of derivations admits a nontrivial diagon-
alizable derivation. So we can call a Lie algebrag characteristically nilpotent of index
k if g and the(k − 1) first algebras of derivations are characteristically nilpotent and
thekth algebra of derivations is not characteristically nilpotent. It would be interest-
ing to know if there is a relation between the nilpotence index or the characteristic
sequence of the algebra and the indexk defined above. It would also be interesting
to know if the sequence of derivation algebras stabilizes or not.
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